Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna.
نویسندگان
چکیده
In this study, we developed a toxicity model predicting the long-term effects of copper on the reproduction of the cladoceran Daphnia magna that is based on previously reported toxicity tests in 35 exposure media with different water chemistries. First, it was demonstrated that the acute copper biotic ligand model (BLM) for D. magna could not serve as a reliable basis for predicting chronic copper toxicity. Consequently, BLM constants for chronic exposures were derived by multiple regression analysis of 21-d median effective concentrations (EC50s; expressed as Cu2+ activity) versus physicochemistry from a large toxicity dataset and the results of an additional experiment in which the individual effect of sodium on copper toxicity was investigated. The effect of sodium on chronic toxicity (log K NaBL = 2.91) seemed to be similar to its effect on acute toxicity (log K NaBL = 3.19). However, in contrast to the acute BLM, no significant calcium, magnesium, or combined competition effect was observed, and an increase in proton competition and bioavailability of CuOH+ and CuCO3 complexes was noted. Some indirect evidence was also found for some limited toxicity of complexes of copper with two of three tested types of dissolved organic matter. Because the latter was only a minor effect, this factor was not included in the chronic Cu BLM. The newly developed model performed well in predicting 21-d EC50s and no-observed-effect concentrations in natural water samples: 79% of the toxicity threshold values were predicted within a factor of two of the observed values. It is clear, however, that more research is needed to provide information on the exact mechanisms that have resulted in different BLM constants for chronic exposures (as opposed to acute exposures). It is suggested that the developed model can contribute to the improvement of risk assessment procedures of copper by incorporating bioavailability of copper in these regulatory exercises.
منابع مشابه
Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna.
The Biotic Ligand Model has been previously developed to explain and predict the effects of water chemistry on the toxicity of copper, silver, and cadmium. In this paper, we describe the development and application of a biotic ligand model for zinc (Zn BLM). The data used in the development of the Zn BLM includes acute zinc LC50 data for several aquatic organisms including rainbow trout, fathea...
متن کاملAn evaluation of biotic ligand models predicting acute copper toxicity to Daphnia magna in wastewater effluent.
The toxicity of Cu to Daphnia magna was investigated in a series of 48-h immobilization assays in effluents from four wastewater treatment works. The assay results were compared with median effective concentration (EC50) forecasts produced by the HydroQual biotic ligand model (BLM), the refined D. magna BLM, and a modified BLM that was constructed by integrating the refined D. magna biotic liga...
متن کاملPredicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model.
The individual effect of different major cations (Ca2+, Mg2+, Na+, K+, and H+) on the acute toxicity of zinc to the waterflea Daphnia magna was investigated. The 48-h median effective concentration (EC50) in the baseline test medium (i.e., a standard medium with very low ion concentrations) was about 6 microM (Zn2+). An increase of Ca2+ (from 0.25 mM to 3 mM), Mg2+ (from 0.25 mM to 2 mM), and N...
متن کاملEffects of chronic dietary copper exposure on growth and reproduction of Daphnia magna.
A matter of current, intense debate with regard to the effects of metals on biological systems is the potential toxicity of metals associated with food particles. Recently developed biotic ligand models (BLM), which predict the toxicity of waterborne metals, may not be valid if the dietary exposure route contributes to metal toxicity. The present study is, to our knowledge, the first that inves...
متن کاملBioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters.
Bioavailability models predicting acute and/or chronic zinc toxicity to a green alga (Pseudokirchneriella subcapitata), a crustacean (Daphnia magna), and a fish (Oncorhynchus mykiss) were evaluated in a series of experiments with spiked natural surface waters. The eight selected freshwater samples had varying levels of bioavailability modifying parameters: pH (5.7-8.4), dissolved organic carbon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental toxicology and chemistry
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2004